Electronic effects on photochemistry: the diverse reaction dynamics of highly excited stilbenes and azobenzene.

نویسندگان

  • Jie Bao
  • Peter M Weber
چکیده

Ultrafast time-resolved mass spectrometry and structural dynamics experiments on trans-stilbene, cis-stilbene, and azobenzene, with excitation to high-lying electronic states, reveal a rich diversity of photochemical reaction dynamics. All processes are found to be quite unlike the well-known photochemistry on lower electronic surfaces. While in trans-stilbene, excitation at 6 eV induces a phenyl twisting motion, in cis-stilbene it leads to an ultrafast ring-closing to form 4a,4b-dihydrophenanthrene. Azobenzene dissociates on an ultrafast time scale, rather than isomerizing as it does on a lower surface. The photochemical dynamics of the sample molecules proceed along steep potential energy surfaces and conical intersections. Because of that, the dynamics are much faster than vibrational relaxation, the randomizing effects from vibrational energy scrambling are avoided, and excitation-energy specific reaction dynamics results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical study of interaction of 4-amino phenyl-azobenzene with (SWCNTs), A DFT method

The electronic and structural properties of single wall carbon nanotubes (SWCNTs) interacted with 4-amino phenyl-azobenzene were theoretically investigated by using the hybrid DFT (hybrid-density functional theory) calculations. The amount of thermodynamic parameters of this reaction in the gas and aqueous phase suggesting thermodynamic favourability for adsorption of 4-amino phenyl-azobenzene ...

متن کامل

Theoretical study of interaction of 4-amino phenyl-azobenzene with (SWCNTs), A DFT method

The electronic and structural properties of single wall carbon nanotubes (SWCNTs) interacted with 4-amino phenyl-azobenzene were theoretically investigated by using the hybrid DFT (hybrid-density functional theory) calculations. The amount of thermodynamic parameters of this reaction in the gas and aqueous phase suggesting thermodynamic favourability for adsorption of 4-amino phenyl-azobenzene ...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

Effect of salicylic acid on photochemistry and antioxidant capacity in Salvia nemorosa plants subjected to water stress.

Oxidative stress is commonly induced when plants are grown under drought stress conditions.To analyze how salicylic acid (SA) can partly alleviate drought-induced oxidative stress and negative impacts of drought on physiology and growth of Salvia nemorosa plants, we investigated the physiological responses of S. nemorosa to SA application under drought stress. The treatments were composed of Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 12  شماره 

صفحات  -

تاریخ انتشار 2011